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ABSTRACT
Atmospheric correction is one of the major challenges in ocean color
remote sensing, thus threatening comprehensive evaluation of water
quality within aquatic environments. In this study, five state-of-the-art
atmospheric correction (AC) processors (i.e. Acolite, C2RCC, iCOR, L2gen,
and Polymer) were applied to Operational Land Imager (OLI) Landsat-8
scenes and evaluated against in situ measurements across various types
of waters worldwide. A total of 262 matchups between in situ measured
and satellite-derived remote sensing reflectance (Rrs) at 20 sites were
obtained between August 2013 and August 2021. Classification of optical
water types (OWTs) was carried out using in situ measurements with
matched satellite observations. OWT-specific analysis demonstrated that
L2gen produced the most accurate Rrs with R2≥ 0.74 and root mean
squared error (RMSE)≤ 0.0018 sr–1 for the four visible bands of OLI,
followed by Polymer, C2RCC, iCOR, and Acolite. In terms of Rrs spectral
similarity, C2RCC yielded the lowest spectral angle (SA) of 8.55°, followed
by L2gen (SA = 9.20°). The advantage and disadvantage of each AC
scheme were discussed. Recommendations to improve the accuracy for
atmospheric correction were made, such as polarization observations and
concurrent aerosol and ocean color measurements.
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1. Introduction

Although coastal waters occupy only 7% of the total ocean surface, they serve as essential hubs for
human and wildlife activities and are critical components of global ecosystems (Osterholz et al.
2021). Given their importance in human habitation, resource provisioning, cultural practice, and
carbon sequestration, they play a significant role in achieving the Sustainable Development
Goals (SDGs). However, global trends point to continued deterioration of coastal waters caused
by pollution and eutrophication (Chen et al. 2017). Therefore, it is very important to conduct sys-
tematic, large-scale, and continuous researches on them from a long-term perspective (Jamet et al.
2011). With the advantage of synoptic views of marine biosphere over large spatial and temporal
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scales, ocean color remote sensing represents a unique tool to provide vital insights into the linkage
between human activity and coastal marine environments. Its products can serve for comprehen-
sive evaluation of water quality and greatly facilitate assessment of coastal ecosystems (Marrari, Hu,
and Daly 2006; Volpe et al. 2007; Malenovsky et al. 2012; Platt 2008; Mouw et al. 2015).

It is well-known that top-of-atmosphere signals received by ocean color satellite sensors contained
approximately 90% atmospheric and 10% oceanic information (Gordon et al. 1985). Therefore, atmos-
pheric correction (AC) is one of the key procedures in the application of quantitative ocean color
remote sensing. The black pixel assumption algorithm performs well and can reach the goal of 5%
uncertainty for remote sensing reflectance (Rrs, unit sr

–1) in the blue and green wavelengths for
open oceanic waters (Gordon and Wang 1994; Mélin 2019). However, AC over coastal waters is chal-
lenged by the presence of continental aerosols, bottom reflection, and adjacency of land (Renosh et al.
2020; Siegel et al. 2000; Shanmugam 2012). Numerous efforts have been made to minimize those per-
turbing effects (Xue et al. 2021). For example, wavelengths in the ultraviolet (He et al. 2012) or in the
short-wave infrared (SWIR) (Wang 2007; Wang and Shi 2007) were introduced to improve the deter-
mination of the aerosol model in highly turbid waters. Fixed reflectance models and spatial homogen-
eity of aerosol were also proposed for moderately turbid waters (Hu, Carder, and Muller-Karger 2000;
Ruddick, Ovidio, and Rijkeboer 2000). With the availability of powerful computation facilities,
numerical and statistical optimization algorithms were developed (Chomko and Gordon 1998; Guan-
ter et al. 2010; Son and Wang 2012; Wang et al. 2020). To ensure the continuity and consistency with
past and present ocean color missions, it is essential to validate and assess the existent AC schemes
across various types of waters with different hydrodynamic and atmospheric conditions.

Performance of AC schemes has been validated over turbid waters for different satellite sensors,
such as Medium Resolution Imaging Spectrometer (MERIS) (Jaelani et al. 2015), Sea-ViewingWide
Field-of-View Sensor (SeaWiFS) (Jamet et al. 2011), Moderate Resolution Imaging Spectroradi-
ometer-Aqua (MODIS-Aqua) (Zhang et al. 2018; Goyens, Jamet, and Schroeder 2013), Geostation-
ary Ocean Color Imager (GOCI) (Mu et al. 2019; Huang et al. 2019), OLI (Wei et al. 2018; Xu et al.
2020), Sentinel-2 MultiSpectral Instrument (MSI) (Konig, Hieronymi, and Oppelt 2019; Warren
et al. 2019; Martins et al. 2017; Pflug et al. 2019; Pereira-Sandoval et al. 2019), and Ocean and
Land Color Instrument (OLCI) (Renosh et al. 2020; Mograne et al. 2019). Various levels of uncer-
tainties were found from those validation practice over optically diverse waters. Previous studies
focused on assessing waters in North America and Europe (Ilori, Pahlevan, and Knudby 2019;
Xu et al. 2020; Warren et al. 2019; Pereira-Sandoval et al. 2019; Mograne et al. 2019). However,
the optimal AC scheme over turbid waters from a global perspective needs further investigation,
such as in China Seas and off South America.

In this study, we aim to compare five state-of-the-art AC processors for OLI commonly used in
the field of ocean color, i.e. Acolite, C2RCC, iCOR, L2gen, and Polymer. Extensive datasets over
global oceans are involved, including Europe, Africa, North America, South America, Asia, and
Oceania. The most suitable AC method for each region based on precision or spectral similarity
needs will be proposed. To achieve the goal, in situmeasurements across global waters from differ-
ent sources are utilized, including Aerosol Robotic Network-Ocean Color (AERONET-OC), Sea-
WiFS bio-optical archive and storage system (SeaBASS), Marine Optical BuoY (MOBY),
National Satellite Ocean Application Service of China (NSOAS), and our research cruises. Optical
classification for different water bodies is implemented using Rrs spectra.

2. Data and method

2.1. In situ observation

In situ observations from a total of 20 sites around the world, as shown in Figure 1, were
collected between August 2013 and August 2021, coinciding with OLI/Landsat 8 overpasses.
Table 1 lists the information for those 20 stations. Figure 2 shows OLI-derived true color
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composites for those stations across various types of waters with different hydrodynamic con-
ditions. AERONET-OC provides normalized water-leaving radiance (nLw) at globally distributed
offshore sites. Quality-assured nLw (Level 2.0) data from 12 AERONET-OC sites were used.
Equation (1) was used to convert nLw to Rrs. SeaBASS is a well moderated and documented
archive for bio-optical data, which is operated by National Aeronautics and Space Adminis-
tration (NASA). SeaBASS data were downloaded from https://seabass.gsfc.nasa.gov/. MOBY,
anchored off Lanai, Hawaii, has provided vicarious calibration data in near real time for
ocean color sensors since 1996. MOBY-measured Lw data were acquired from the National
Oceanic and Atmospheric Administration (NOAA). NSOAS deployed an ocean color instru-
ment, named Cruise for Apparent Optical Properties (CruiseAOP), to collect Rrs at a fixed
station off Muping, China, which became operational since January 2020 and is about 25

Figure 1. Map of 20 sites (solid circles) with matched in situ radiometric measurements within ± 2 h of Landsat-8 overpasses.
Dots of the same color represent sites given the same name listed in Table 1. Names of six locations whose remote sensing reflec-
tance (Rrs) spectra are shown in Figure 7 are annotated. Please refer to Table 1 for details. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 1. Information for locations with matched in situ radiometric and Landsat 8 OLI measurements, including station number,
station name and their abbreviations, latitude, and longitude.

Station # Station name Abbreviation Latitude Longitude

① Southern North Sea of Europe-Strait of Dover SoD 51.53° 2.96°
② West Baltic Sea-Norrkoping Sea NS 58.59° 17.47°
③ East Baltic Sea-Gulf of Finland GoF 59.95° 24.93°
④ Northern Mediterranean-Adriatic Sea AS 45.31° 12.51°
⑤ Central Mediterranean-Ionian Sea IS 34.37°∼38.81° 20.42°∼29.39°
⑥ West Black Sea-Eastern Lacul Razim ELR 44.60° 29.36°
⑦ West Black Sea-Varna Estuary VE 43.04° 28.19°
⑧ Northwest Yellow Sea-Muping MP 37.68° 121.70°
⑨ Northern Yellow Sea NYS 37.42° 124.74°
⑩ Western Sea of Japan-South Korea’s waters SK 35.47° 129.62°
⑪ Northern South China Sea-Yangjiang Waters YJ 21.69°∼21.70° 112.30°∼112.44°
⑫ Central South China Sea CSCS 13.06°∼20.19° 113.53°∼117.95°
⑬ Great Barrier Reef GBR –18.52° 146.39°
⑭ Hawaiian Islands HI 20.81°∼20.82° –157.20°∼–157.19°
⑮ Northeast Pacific-Channel Islands of California CIoC 33.56° –118.12°
⑯ West Atlantic-Southern Caribbean SC 10.50° –64.67°
⑰ Northwest Atlantic-Mississippi Estuary ME 28.87° –90.48°
⑱ Northwest Atlantic-Chesapeake Bay CB 33.41°∼36.9° –78.51°∼–75.71°
⑲ Northwest Atlantic-Marthas Vineyard MV 41.30° –70.55°
⑳ West Atlantic-La Plata-Parana River LPPR –34.76° –56.54°
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kilometers away from the coastline with a water depth of about 12 m. Two field campaigns were
conducted in May-June and August 2021 in the South China Sea (SCS), respectively, during
which CruiseAOP was also used for Rrs measurements.

The CruiseAOP instrument was equipped with three pre-calibrated radiometers (TriOS
RAMSES-ARC-VIS), one for irradiance and the other two for radiance. The instrument has a
rotatable component which can automatically control the observation geometry of the sensors.
The total above-surface radiance (Lt), downwelling sky radiance (Ls), and downwelling incident
irradiance (Es) in the spectral range of 325–944 nm were simultaneously measured at an interval
of 15 minutes. For each time stamp, 15 spectral scans were recorded for Lt, Ls, and Es, respect-
ively. The averaged spectra were then obtained. All measurements followed the NASA ocean
optics protocols to minimize sun glint perturbations (Mueller et al. 2003). According to

Figure 2. OLI/Landsat-8 derived RGB composites for the 20 stations listed in Table 1.
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Lee et al. (2016), Rrs was calculated from

Rrs(l) = Lw(l)
Es(l)

= nLw(l)
F0(l)

(1)

Rrs(l) = Lw(l)
Es(l)

= Lt − rsLs(l)
Es(l)

− D (2)

where ρs is the Fresnel reflectance at the air–sea interface and was determined following Mobley
(1999). F0 represents the solar irradiance of perpendicular incident outside the atmosphere at
mean sun-Earth distance. Δ is related to a second-order correction and determined by setting
the spectrally averaged Rrs between 900 and 920 nm to 0 here.

2.2. Satellite data processing

On 11 February 2013, the Landsat-8 satellite was launched as a joint initiative between the U.S.
Geological Survey (USGS) and NASA, carrying the Operational Land Imager (OLI) and the
Thermal Infrared Sensor (TIRS). OLI measures top of atmosphere (TOA) radiance in 9 wave-
bands in the visible to shortwave infrared (SWIR) domain at a spatial resolution of 30 m. Land-
sat-8 OLI collection 1 level 1 data were downloaded from USGS. Five AC algorithms, namely
Acolite, C2RCC, iCOR, L2gen, and Polymer, were implemented. Acolite, C2RCC and L2gen
directly output Rrs while iCOR and Polymer yielded dimensionless water-leaving reflectance
(ρw) that was transformed into Rrs via Rrs = ρw/π. Rrs at 443, 482, 561, and 655 nm was
generated.

2.3. Optical water types

To meet the need for an assessment of AC processors across widely variable coastal water
conditions, the fuzzy C-means (FCM) clustering algorithm proposed by Vantrepotte et al.
(2012) was employed for the classification of optical water types (OWTs). As shown in
Figure 3, five OWTs were achieved for all data involved in this study based on their spectral
shape and m. They were numbered sequentially from blue, oligotrophic waters to moderately
eutrophic, sediment-rich waters with an overall trend of increasing chlorophyll and optical
complexity.

To enable direct inter-comparison among the AC processors for each OWT, the following steps
were carried out. First of all, pairs of matched in situ and satellite-derived Rrs were defined. If Rrs

retrieval from any AC algorithm fails, the data pair would be rejected. 13 pairs of data were retained
for OWT 1, 109 for OWT 2, 81 for OWT 3, 32 for OWT 4, and 12 for OWT 5. Secondly, the five
algorithms were ranked based on statistical measures. Finally, the comprehensive ranking of each
AC algorithm for each band was obtained.

2.4. Match-up analysis

The flowchart of match-up analysis between in situ measurements and satellite observations is
shown in Figure 4. For some in situ measurements, Rrs at certain bands was not available and
thus discarded. Duplicated data were removed since different data sources were involved. The
spatial and temporal windows were set to 5 × 5 and ±2 h, respectively. The matching exercise
followed the approach proposed by Bailey and Werdell (2006). For each matched pair, the
median of Rrs (λ) over a 5 × 5 pixel window centered at the station was used. A median is
better than a mean because the former is less sensitive to spikes. Several flags were
checked for satellite-derived Rrs, including cloud shadow, stray light, and sun glint. Finally,
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262 pairs of matched field measurements and OLI observations were obtained, with 184 from
AERONET-OC, 21 from SeaBASS, 33 from MOBY, 11 from Muping, and 13 from the SCS.

2.5. Statistical analysis

Along with slope, intercept, and determination coefficient (R2), the following statistical measures,
i.e. bias, absolute error (AE), and root mean square error (RMSE), were used for the performance

Figure 3. Averaged Rrs spectra for the five optical water types (OWTs).

Figure 4. Flowchart for matchup analysis and satellite data processing in this study.
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assessment of the five AC algorithms:

bias (%) = 1
n
∗
∑n

i=1

(Rrs
sat

i(l)− Rrs
meas

i(l))
Rrs

meas
i(l)

∗100 (3)

AE = 1
n
∗
∑n

i=1
|Rrs

sat
i(l)− Rrs

meas
i(l)| (4)

RMSE =
���������������������������������∑n

i=1 (Rrs
sat

i(l)− Rrs
meas

i(l))
2

n

√
(5)

where n is the number of match-ups, Rrs
sat denotes satellite-derived Rrs using a specific AC algorithm,

and Rrs
meas denotes field measured Rrs. Spectral Angle (SA) (Keshava 2004) was introduced to quan-

tify the similarity between satellite-derived and in situ measured Rrs spectra. SA is insensitive to
amplitude and calculated from

SA = cos−1

∑n
i=1

Rrs
meas

i × Rrs
sat

i��������������∑n
i=1

(Rrs
meas

i)
2

√ �����������∑n
i=1

(Rsat
rs i)

2

√ (6)

where i denotes the ith band of OLI. Smaller SA indicates higher similarity. If Rrs for an OLI wave-
length is not available, data for the nearest wavelength were used instead.

3. Description for AC algorithms

TOA radiance received by ocean color satellite sensors (Ltoa) can be decomposed into several terms
as follows:

Ltoa(l) = LR(l)+ LA(l)+ Lra(l)+ T(l)Lg(l)+ Lb(l)+ td(l)Lwc(l)+ td(l)Lw(l) (7)

LR(λ) is the Rayleigh scattering of atmospheric molecules. LA(λ) is the aerosol scattering in the
atmosphere. Lra(λ) is the multiple scattering of aerosol-molecular interaction. Lg(λ) is the reflection
of sun glint on the sea surface entering the sensor field of view, also known as specular reflectance.
Lb is the reflection from bottom. Lwc(λ) is the reflection of white bubble cloud entering the sensor
field of view, also known as white cap reflection. Lw(λ) is water-leaving radiance. T(λ) is the direct
transmittance, also known as beam transmittance. td(λ) is the atmospheric attenuation coefficient
between sea surface and sensor, also known as atmospheric diffuse transmittance.

Acolite (version 20210114) is a generic image-base processor developed by the Royal Belgian
Institute of Natural Sciences (RBINS). It does not need external inputs, such as aerosol optical
thickness (AOT). The default dark spectrum fitting (DSF) approach was utilized (Vanhellemont
2019). This scheme assumes a homogeneous atmosphere. An automated method is performed to
predict atmospheric path reflectance based on multiple dark pixels selected in a scene (such as
ground surface shadows or water pixels). This approach requires the presence of SWIR bands to
work over scenes with only turbid waters (Vanhellemont and Ruddick 2018).

The Case 2 Regional Coast Color (C2RCC) processor involves a multi-sensor per-pixel artificial
neural network to perform the inversion of Lw from Ltoa, as well as the retrieval of inherent optical
properties (IOPs) (Doerffer and Schiller 2007; Brockmann et al. 2016). Characterization of optically
complex waters through its IOPs as well as of coastal atmospheres is performed to parameterize
radiative transfer models for water and atmosphere. A large dataset for reflectance at water surface
is produced, which is then used as lower boundary conditions for the radiative transfer calculation
in the atmosphere. A database of 5 million cases is generated, which forms the basis for neural

72 N. YAN ET AL.



network training. It can be imbedded into the SeNtinel Application Platform (SNAP, V6.0) soft-
ware. The default settings were used for all images.

Image correction for atmospheric effects (iCOR) offers the ability of AC over inland, coastal, and
transitional waters (Guanter, Gonzalez-Sanpedro, and Moreno 2007). It first identifies land and water
pixels using a band threshold approach. Scene-specific aerosol optical thickness (AOT) is obtained
following the SCAPE-M algorithm (Guanter, Gonzalez-Sanpedro, and Moreno 2007). An adjacency
correction can optionally be applied using the SIMilarity Environmental Correction (SIMEC)
approach (Sterckx et al. 2015). A MODerate resolution atmospheric TRANsmission (MODTRAN
5) look-up table is built (Berk et al. 2006), which requires ancillary information as inputs, such as
solar and viewing angles and digital elevation model. If the above steps fail, Rayleigh scattering cor-
rection is automatically initiated with a default AOT of 0.1. Proper terrestrial pixel distributions are
needed to obtain the best results. iCOR can be implemented as a plugin in the SNAP software (V6.0).
In this study, the default settings were applied and the adjacency correction was implemented.

Level 2 generator (L2gen) is a combination of NASA atmospheric correction algorithms. It employs
bio-optical models and resolves AC in an iterative process (Gordon andWang 1994; Bailey, Franz, and
Werdell 2010). An iterative scheme is exploited to estimate the aerosol radiance at the near-infrared
(NIR) and/or shortwave infrared (SWIR) bands to relax the limitation of the ‘dark pixel’ assumption.
In this study, OLI bands centered at 865 and 2201 nm were exploited. This NIR-SWIR band combi-
nation has been proven to yield the most robust Rrs in moderately turbid waters (Pahlevan et al. 2017).
L2gen is a built-in program for SeaWiFS Data Analysis System (SeaDAS, V7.5).

The Polynomial based algorithm applied to MERIS (Polymer) is specially designed for oceanic
waters with and without the presence of sun glint (Steinmetz, Deschamps, and Ramon 2011). Com-
pared with other AC algorithms, it can thus improve valid data availability. It employs a spectra-
matching optimization method on a pixel-by-pixel basis. It relies on two models, one for spectral
reflectance of atmosphere and sun glint and the other for water reflectance in the visible wavebands.
The bio-optical water reflectance model is extended to NIR wavebands using the similarity spec-
trum for turbid waters (Ruddick et al. 2006). The parameters for the two models are tuned itera-
tively to produce the best fit. Default settings for Polymer (V4.14) were used.

4. Results

4.1. Validation of Rrs from the five AC schemes

Figure 5 shows the scatter plots of in situ measured against OLI-derived Rrs in the visible region
from the five AC schemes. The statistical results are summarized in Table 2. The histograms for
AE, bias, RMSE, and R2 are displayed in Figure 6. It can be seen that the performance of the five
AC algorithms indicates discrepancies for different wavelengths. For the 443 nm band, L2gen
demonstrates the best performance with the largest R2 of 0.74, a slope closest to 1, and the smallest
RMSE, AE and bias, followed by Polymer, C2RCC, iCOR, and Acolite. For the 482 nm band, Poly-
mer produces the best result with the largest R2 of 0.84 and the smallest RMSE. For the green band
centered at 561 nm, L2gen also yields the best match between in situ and satellite-derived Rrs with a
R2 of 0.97, a RMSE of 0.0013 sr–1, and a bias of –7%. In terms of R2 and bias, C2RCC illustrates
better performance than Polymer. The worst performance is found from iCOR. The performance
of Acolite is ranked the fourth among the five algorithms. With respect to the red band centered at
655 nm, Rrs data from L2gen show the best agreement with in situ measurements with a slope clo-
sest to 1 and the smallest bias. Polymer and C2RCC have similar performance. Relatively large devi-
ation from the 1:1 relationship is observed for Rrs from Acolite and iCOR while the latter agrees
better with field measurements than the former. For all AC matchups, the scatter points are rela-
tively dispersed for Rrs at 443 nm, which is consistent with previous findings (Pahlevan et al. 2021).

In general, Rrs for all bands is overestimated by Acolite and iCOR. AE and bias for Rrs from Aco-
lite and iCOR are much larger than from other three algorithms. Note that L2gen exhibits near-zero
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biases at 482, 561, and 655 nm, which corroborates the findings of previous studies (Pahlevan et al.
2021). As shown in Table 3, L2gen has the best performance at 443 and 482 nm with the smallest AE
while Polymer has the best performance at 561 and 655 nm. Polymer-derived versus in situ Rrs

points are evenly scattered around the 1:1 line with R2s > 0.7 for all bands. L2gen produces the low-
est bias, AE and RMSE for four bands while tends to overestimate Rrs at 443 and 482 nm, which is
consistent with recent studies (Ilori, Pahlevan, and Knudby 2019; Xu et al. 2020). To further evalu-
ate algorithm performance, radar charts displaying statistical measures for each band are shown in
Figure 7. Each vertex of the hexagon represents a statistical parameter. The length of a spoke is pro-
portional to the magnitude of a statistical measure. Results further away from the center represent
higher metric values, demonstrating better performance than those closer to it. In this scenario, all
statistical parameters can be superimposed to objectively assess the performance of each AC algor-
ithm from a global perspective. It can be seen that the area for L2gen is the largest for all bands,
indicative of the best comprehensive performance. The performance ranking is followed by Poly-
mer, C2RCC, iCOR, and Acolite in order. Therefore, it can be concluded that L2gen has the best
performance among the five AC schemes.

Figure 5. Scatter plots of satellite-derived versus in situmeasured Rrs for visible bands of OLI/Landsat-8. The orange dashed lines
refer to the 1:1 relationship and other colored lines represent the best-fitted relationships. Note that the scale for each band is
different.
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Table 2. Statistical results for remote sensing reflectance (Rrs) at four visible bands of Operational Lands Imager (OLI) Landsat 8
using five atmospheric correction (AC) algorithms, including Acolite, C2RCC, iCOR, L2gen, and Polymer. Statistical measures for
comparison between in situ and satellite measurements include slope, intercept, R2, root mean square error (RMSE), absolute
error (AE), bias, spectral angle (SA), quality assurance (QA) score. N denotes the number of data samples. Best metrics for
each band are highlighted in bold.

AC Band Slope Intercept R2 RMSE (sr–1) AE (sr–1) Bias SA (°) QAS N

Acolite 443 0.82 0.0055 0.31 0.0031 0.0047 128% 13.7 0.65 227
482 0.82 0.0047 0.56 0.0024 0.0039 77%
561 0.93 0.0031 0.80 0.0020 0.0031 56%
655 0.96 0.0028 0.70 0.0018 0.0027 243%

C2RCC 443 0.72 0.0024 0.46 0.0032 0.0017 28% 8.6 0.98 262
482 0.83 0.0010 0.63 0.0022 0.0018 14%
561 0.88 0.0004 0.84 0.0018 0.0013 5%
655 0.79 0.0004 0.92 0.0008 0.0004 18%

iCOR 443 0.83 0.0035 0.46 0.0112 0.0029 56% 19.4 0.60 253
482 1.32 –0.0003 0.75 0.0034 0.0025 27%
561 1.11 0.0007 0.39 0.0051 0.0024 20%
655 1.62 0.0017 0.40 0.0081 0.0022 122%

L2gen 443 0.93 0.0010 0.74 0.0018 0.0011 13% 9.2 0.81 233
482 0.82 0.0007 0.77 0.0018 0.0009 –3%
561 0.97 –0.0003 0.92 0.0013 0.0009 –7%
655 0.96 0.0002 0.89 0.0010 0.0005 1%

Polymer 443 0.80 0.0023 0.66 0.0038 0.0015 34% 10.8 0.96 261
482 0.74 0.0019 0.84 0.0013 0.0012 11%
561 0.73 0.0012 0.81 0.0013 0.0008 –7%
655 0.92 0.0001 0.77 0.0008 0.0003 –8%

Figure 6. Histograms for absolute error (AE), bias, root mean square error (RMSE), and R2 for satellite-derived vs in situmeasured
Rrs at visible bands of OLI/Landsat-8.
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Table 3. ACs with the best performance for each station in terms of SA and average of AE (AAE) between in situ and satellite
measured Rrs. The number in brackets in the second column indicates the number of matched in situ and OLI measured Rrs.
The sixth to ninth columns represent ACs with the best performance for each visible band of Landsat 8 OLI for each station.

Station Region with match-ups Best AC SA (°) AAE (sr–1) 443 nm 482 nm 561 nm 655 nm

① SoD (5) L2gen 5.20 0.0005 L2gen L2gen L2gen L2gen
② NS (14) C2RCC 9.10 0.0004 C2RCC C2RCC Polymer C2RCC
③ GoF (20) L2gen 11.71 0.0005 L2gen L2gen Polymer C2RCC
④ AS (40) Polymer 7.06 0.0009 L2gen L2gen Polymer Polymer
⑤ LS (4) C2RCC 3.20 0.0006 C2RCC Polymer C2RCC C2RCC
⑥ ELR (35) C2RCC 6.72 0.0012 C2RCC L2gen L2gen Polymer
⑦ VE (21) C2RCC 7.19 0.0007 L2gen L2gen Polymer Polymer
⑧ MP (11) C2RCC 8.75 0.002 C2RCC Polymer Polymer Polymer
⑨ CYS (2) C2RCC 6.75 0.0004 C2RCC C2RCC L2gen C2RCC
⑩ SK (1) iCOR 1.00 0.0164 Polymer Polymer C2RCC C2RCC
⑪ YJ (4) Polymer 6.01 0.0053 L2gen L2gen L2gen L2gen
⑫ CSCS (9) Polymer 12.00 0.0082 Polymer Polymer Polymer Polymer
⑬ GBR (6) Polymer 5.26 0.0024 Polymer Polymer Polymer Polymer
⑭ HI (8) C2RCC 3.26 0.0009 L2gen L2gen Polymer Polymer
⑮ CIoC (16) Polymer 4.26 0.0010 L2gen L2gen Polymer Polymer
⑯ SC (4) C2RCC 8.44 0.0005 C2RCC C2RCC Polymer C2RCC
⑰ ME (19) C2RCC 5.11 0.0007 C2RCC C2RCC L2gen C2RCC
⑱ CB (8) L2gen 8.63 0.0003 L2gen L2gen L2gen Polymer
⑲ MV (29) C2RCC 6.81 0.0013 C2RCC Polymer Polymer Polymer
⑳ LPPR (7) iCOR 2.37 0.0046 Acolite C2RCC C2RCC C2RCC

Figure 7. Radar map for each visible band of OLI in terms of bias, slope, intercept, R2, RMSE, and AE.
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4.2. Relative performance assessments for five optical water types

Figure 8 shows relative performance assessments of AC algorithms for the five OWTs. Overall,
L2gen demonstrates good performance for all five OWTs, especially at 443 and 482 nm. In contrast,
among the five algorithms, Acolite generally produces the poorest results for all five OWTs except
for OWT5. It appears that Acolite is suitable for sediment-rich waters, consistent with previous
findings (Renosh et al. 2020; Pereira-Sandoval et al. 2019). Polymer performs well for OWTs 1
to 3, especially at 561 nm, where it always illustrates the best results. Note that the performance
of Polymer compromises in turbid coastal waters, such OWTs 4 and 5. C2RCC-derived Rrs

shows the highest accuracy for OWT 2 among the five algorithms and indicates the best perform-
ance at 655 nm. This can be attributed to the precise handling of low Rrs values in the red bands by
the neural network of C2RCC. The performance of iCOR has low ranking for OWTs 1 to 4. How-
ever, iCOR shows good performance for Rrs at 443 and 482 nm for OWT 5, ranking the first and
second, respectively.

Figure 9 shows the comparison between averaged Rrs spectra from in-situ and satellite obser-
vations using different AC algorithms for the five OWTs. L2gen-generated Rrs spectra agree well
with in situ measurements. In general, Acolite-obtained Rrs spectra deviate the most from in situ
data for all OWTs except for OWT 5. This further verifies that Acolite is suitable for the treatment
of highly turbid water bodies. The spectral shape of Polymer-derived Rrs is in good agreement with
in situ measurements of OWTs 1 to 3, especially at 561 and 655 nm. Nevertheless, its performance
degrades for OWTs 4 to 5. Rrs from iCOR is generally overestimated. Table 4 lists the most suitable
OWT-specific AC algorithm for each wavelength based on spectral shape preference via calculating
SA. It can be seen that the spectral similarity for Rrs from Polymer is the highest for OWT 1 with an
SA of 1.15°. C2RCC has the smallest SAs for OWTs 2 and 4 with SAs of 4.92° and 1.31°, respectively.
L2gen-derived Rrs has the most similar spectral shapes to the in-situ data for OWTs 3 and 5 with
SAs of 3.94° and 1.57°, respectively. These findings are consistent with those shown in Figure 9.

Figure 8. Performance assessment of five AC algorithms for five optical water types (OWTs). Different colors indicate their rank-
ings for the visible bands of OLI/Landsat 8. Warm color indicates better performance. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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4.3. Comparison of Rrs spectra for different stations

In situ measured Rrs spectra with matched satellite measurements for six sites from five conti-
nents, three in the northern hemisphere and three in the southern hemisphere, respectively,

Figure 9. Comparison between averaged Rrs spectra from in-situ and satellite observations using different AC algorithms for five
OWTs.

Table 4. AC algorithm assessment for different optical water types (OWTs) using SA and the optimal algorithm is highlighted in
bold. The best band-specific algorithm for each OWT is also presented. The number in brackets in the first column indicates the
number of matched in situ and OLI-measured Rrs for each OWT.

OWTs (of match-ups) ACs SA (°) 443 nm 482 nm 561 nm 655 nm

OWT 1
(13)

Acolite 8.26 Polymer L2gen Polymer C2RCC
C2RCC 1.42
iCOR 7.95
L2gen 3.29
Polymer 1.15

OWT 2
(109)

Acolite 14.87 C2RCC L2gen Polymer C2RCC
C2RCC 4.92
iCOR 15.14
L2gen 7.71
Polymer 13.91

OWT 3
(81)

Acolite 9.77 L2gen Polymer Polymer C2RCC
C2RCC 4.60
iCOR 7.00
L2gen 3.94
Polymer 5.34

OWT 4
(32)

Acolite 7.16 Polymer L2gen L2gen L2gen
C2RCC 1.31
iCOR 4.18
L2gen 2.12
Polymer 4.63

OWT 5
(12)

Acolite 8.48 iCOR L2gen L2gen L2gen
C2RCC 8.03
iCOR 9.33
L2gen 1.57
Polymer 6.03
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across various types of waters are shown in Figure 10. Rrs from the Gulf of Finland (GoF) was
generally lower than 0.008 sr–1 and peaked in the green region with a minimum in the blue
region < 0.0015 sr–1. These spectral features were attributed to high contents of colored dissolved
organic matter (CDOM), whose absorption at 412 nm varied between 0.8 and 1.6 m–1 (Kowalc-
zuk 1999). Rrs spectra from Muping and Mississippi River Estuary were similar and character-
ized by peaks at 561 nm that varied in the range of 0.003–0.02 sr–1 and 0.0026–0.016 sr–1 for the
two stations, respectively. Note that there were several cases when Rrs peaked at 482 nm and
was < 0.003 sr–1 for both stations, which was caused by the landward movement of clear blue
waters around them. For the Adriatic Sea and Great Barrier Reef stations, the peak wavelength
of Rrs spectra varied between 482 and 561 nm. The peak values also demonstrated relatively
large ranges, almost an order of magnitude. Rrs spectra from Muping, Mississippi River Estuary,
Adriatic Sea, and Great Barrier Reef were typical for coastal waters influenced by both fresh-
water discharge and local ocean circulation (Mélin et al. 2016). Rrs spectra from the La Plata-
Parana River were characterized by high values in the red domain. Rrs spectral peak at 561
gradually disappeared and the entire spectra were uplifted, which was associated with high
loads of suspended sediment and agreed well with the findings in the Yangtze River Estuary
(Pan, Shen, and Wei 2018).

SAs computed for all stations over global oceans are illustrated in Figure 11. L2gen and C2RCC
achieve the lowest median SA of 8° while the former has a smaller interquartile range and thus tigh-
ter distribution than the latter. Averaged in situ Rrs spectra and the matched satellite observations
for the six stations are shown in Figure 12. The best-performing AC algorithm for all stations in
terms of SA and average of AE (AAE) is summarized in Table 3. Apparently, great discrepancies
can be recognized for different AC schemes. For example, C2RCC demonstrates the best perform-
ance for theMuping station with an SA of 8.75° and an AAE of 0.002 sr–1. For the Great Barrier Reef
station, Rrs spectra from Polymer have the highest similarity to in situ data. Among the five algor-
ithms, Rrs spectra from Acolite generally deviate the most from in situmeasurements. On the other
hand, it deserves noting that the performance of AC algorithms varies for different bands. Table 3

Figure 10. In situ measured Rrs spectra at six sampling sites. Only those with matched satellite observations are shown here.
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lists the optimal AC algorithm for each band at each station. Except for several cases where L2gen or
Polymer produces the best Rrs retrievals for all bands, mixed AC solutions are observed. Note that
Acolite yields the best Rrs at 443 nm in the very turbid La Plata-Prana River. It may therefore be
advantageous to seek a fit-for-purpose AC that estimates satisfactory Rrs retrievals in only one or
two individual bands for specific applications.

4.4. Inter-comparison of satellite-derived Rrs spectra

The quality assurance (QA) evaluation system developed by Wei, Lee, and Shang (2016) is
introduced here to further assess the quality of Rrs from each AC algorithm in terms of spatial
distribution for different OWTs. It was applied to a satellite scene on 20 February 2016 with
clear sky conditions covering the region that receives freshwater and nutrients via two large
rivers, namely the Mississippi River (MR) and the Atchafalaya River (AR), as illustrated in
Figure 13. A previous study showed that riverine nitrogen input accounted for 80% of the
total nitrogen load on this shelf (Xue et al. 2013), making the MR-AR system a major source
of nutrients to support local primary production (Joshi and D’Sa 2020). The unique absorp-
tion, scattering, and fluorescence properties of optically active constituents affect light fields,
resulting in variations of Rrs spectra. The yellowish-brown color (areas A and D in Figure
13) represents mineral-rich water with a Rrs peak at 655 nm. Rrs for area B has a higher
rate of change than for area A in the visible domain. In this dynamic mixing zone where
CDOM and sediment-rich plume water mixed with oligotrophic offshore waters, apparent dis-
crepancies in water color can be observed. The green color over area C in Figure 13 represents

Figure 11. Spectral angle for each AC processor. Smaller spectral angle would imply more similar shape. The red line represents
the median and the boxes cover the 25–75% range. The upper and lower whiskers represent values outside the middle 50%
(excluding outliers), defined as 1.5 × interquartile range (1.5 IQR). Box plot in depicts median (horizontal line), interquartile
range (box), 1.5 × interquartile range (error bars), and outliers (black dots) which fall more than 1.5 times the interquartile
range. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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waters with more contents of phytoplankton than other areas with Rrs peaks in the green
region (e.g. 561 nm). For area E, Rrs peaks at 561 nm while an order of magnitude smaller
than those for area C.

Figure 12. Comparison between averaged Rrs spectra from field measurements and satellite observations using different atmos-
pheric correction algorithms.

Figure 13. True color composite for 10 February 2016 over the area affected by the Atchafalaya River and the Mississippi River.
Landsat-8 OLI-derived Rrs spectra for five locations, i.e. A–E, representing different water conditions are shown. The colored line
denotes the averaged Rrs for the 30 × 30 pixels and the shaded color denotes standard deviation. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this article.)
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Figure 14 shows the comparison of QA scores for Rrs derived from different AC processors. It
can be seen that Rrs retrieved from all algorithms has higher accuracy in offshore waters than in
nearshore waters, which is likely associated with high loads of suspended sediment in nearshore
water. Note that Rrs over areas with high sediment was masked in the L2gen algorithm although
L2gen-produced Rrs generally demonstrates high quality. In the vicinity of our sampling site
(around area C), QA score is high. C2RCC-derived Rrs demonstrates the best spatial smoothness
than those from other algorithms. In clear blue waters, C2RCC and Polymer has good performance,
followed by Acolite. In contrast, QA scores for Rrs from L2gen and iCOR are even lower than 0.3 in
some areas. These findings are related to the mechanism of AC algorithms mentioned above.

5. Discussion

5.1. Uncertainties of matchup analysis

Although field data are usually considered as ‘ground truth’, they also contain some uncertainties,
like incomplete calibration, non-standard instrument operation, ship shadow, white cap, sun glint,
and the Fresnel reflection of sky radiance (Mobley 1999). A recent study reported that radiometric
measurements at water surface may have an uncertainty of 5–50% in the visible region (Alikas et al.
2020). Another study showed that even the same measurement technique was used with well-cali-
brated instruments, the results differed by up to 10% from AERONET-OC (Tilstone et al. 2020).
This phenomenon can be explained by the following reasons. Firstly, some uncontrollable factors,
such as sea wave and underwater mixing process, caused rapid changes in the aquatic light field and
introduced uncertainties (Ackleson 2003). Secondly, variations in water depth and optical proper-
ties of the water columnmay result in inaccurate measurements (Mishra et al. 2007). Thirdly, in situ
data from different sources were used in this study. They were determined with hyperspectral radio-
meters from different manufacturers with different calibration histories and data processing pro-
cedures also differed. All these factors would introduce potential errors to field data. The spatial
difference between field and satellite observations is well-known since the latter covers much larger
areas than the former. Furthermore, the diversity of benthic substrates is a potential source of differ-
ences between them since variations in optical properties for different benthic habitats can be

Figure 14. Quality assurance score (QAS) for OLI/Landsat 8-measured Rrs from different atmospheric correction processors. The
scene was collected on 10 February 2016. The higher QAS, the better data quality.

82 N. YAN ET AL.



anticipated (Karpouzli and Malthus 2003; Kutser, Dekker, and Skirving 2003). In optically shallow
waters, different types of benthic habitats (like seagrass, bare sand, and coral) can affect the accuracy
of in situmeasurements (Zeng et al. 2022). For example, sites in the Great Barrier Reef in Figure 10
show greater variations in blue wavelengths than in other wavelengths, which may be due to uncer-
tainty in the measurement of surface radiation (i.e. changes in sky conditions) or strong absorption
of benthic corals in blue wavelengths.

Temporal dynamics are one of the key characteristics that ocean and atmosphere differ from
land (Cui et al. 2014). The time difference between in situ and satellite measurements has also
persisted. Although in situ data collected within ±2 h of satellite overpass were used to represent
the matching results, ocean color satellite data are often biased in turbid coastal waters of com-
plex physical and bio-optical properties. For example, rapid changes in sediment re-suspension
caused by wind, tide, river plume, or precipitation during the 2 h period can affect the optical
properties of water column. Moreover, the extent to which wind and tidal changes affect sedi-
ment re-suspension depends on the local bottom topography and varies for different coastal
regions (Choi et al. 2012; Shi and Wang 2009; Nezlin and DiGiacomo 2005). An alternative
is to use matching records with the same collection time. However, the 16-day revisit frequency
of Landsat 8 poses limitations.

Hence, increasing the amount of available data may provide a feasible solution, which can
decrease the potential uncertainties of in situ measurements during inappropriate conditions.
Time series collection of in situ data can be made through a large number of regular and continuous
field work. This requires various shared ocean color field observations (such as SeaBASS and
MOBY) to harmonize data inputs from various sources, expand data reserves, unify data formats,
and simplify the process of data submission and acquisition. These efforts would greatly facilitate
future atmospheric correction assessments. Using a combination of various methods to create a
large data pool may minimize systematic errors in the performance evaluation (Pahlevan et al.
2021). Therefore, it is possible to characterize the optical properties and their spatiotemporal vari-
ations over oceans, which, in turn, can improve the accuracy of AC.

5.2. Advantages and disadvantages for each AC processor

5.2.1. Acolite
The most recent version of Acolite updated the look-up table (LUT) for dark spectral fitting, using
the default continental and maritime aerosol models, and also supports the addition of additional
aerosol models (Vanhellemont 2019). Acolite has been validated over Pléiades images in turbid
coastal waters in Zeebrugge and the results showed that Rrs products from the newly developed
DSF algorithm were superior to those from the SWIR method. But this algorithm can hardly obtain
valid values in clear water (Vanhellemont and Ruddick 2018). DSF is similar to ‘black NIR’ or ‘black
SWIR’ (Gordon and Wang 1994). Involving land pixels in the processing window provides better
performance than using any type of water pixels. Therefore, there is a reasonable explanation for its
poor performance for OWTs 1 to 4 while good for OWT 5 since OWT 5 is closer to land. In
addition, the inaccurate aerosol calculation is a potential cause of errors. A key step of DSF is to
find all ‘dark’ pixels in the entire scene. Vanhellemont and Ruddick (2018) emphasized that
using samples with dark pixels would greatly facilitate AC. However, Acolite dynamically identifies
the darkest pixels for each band and does not implement adjacency correction. Therefore, land pix-
els may contaminate Rrs of adjacent water pixels.

5.2.2. C2RCC
C2RCC generally produced good performance in various regions and bands, ranked the third
behind L2gen and Polymer. Unlike Acolite and L2gen, C2RCC had almost no pixel windows
rejected since the dependence of the algorithm on input parameters is relatively low. However,
C2RCC tended to highly underestimate Rrs for OWTs 1 and 5. This could be related to the fact
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that the optical conditions of the training set (Soriano-González et al. 2022) were closer to those of
OWTs 2 to 4. However, the optical conditions of OWTs 1 and 5 included in this study may differ
from those in the training dataset for C2RCC, which limited the use of this processor in eutrophic
and oligotrophic waters (Ligi et al. 2017).

However, the present version of the C2RCC processor does not correct for the effect of sun glint.
Through feedbacks from the scientific community to characterize the scope and limitation, C2RCC
is constantly improved and the future version is expected to improve the accuracy of the blue band
and correct for sun glint effect. Since the good performance of C2RCC is related to its capability of
capturing slight effects during calibration, new machine-learning solutions should be considered
(Pahlevan et al. 2021). Feasible measures include improving forward radiative transfer modeling
and exploring the latest architectures (e.g. optimization functions, loss functions, activation func-
tions) or models (e.g. Convolutional Neural Network, Recurrent Neural Network).

5.2.3. iCOR
iCOR is an image-based algorithm. It does not require profound knowledge of radiative transfer
and absolute calibration of sensors, which makes it easy to implement. However, this image-
based process requires the radiance from cloud shadow over water and land pixels to derive relevant
parameters for the correction, which are not always present. As shown in Figure 9, iCOR generally
overestimated reflectance for five OWTs due to limited land pixels for aerosol estimation. The
extrapolation of land pixels probably underestimated atmospheric path radiation in coastal waters.
It is very likely that these corrections returned default values of aerosol optical thickness (Warren
et al. 2019). This may help to explain the poor performance of iCOR at offshore stations, such as
Gulf of Finland and Muping. Note that adjacency effect influenced by land cover type and its sea-
sonal variation, topography and other environmental conditions can affect the estimation of aerosol
types and thickness, especially in inland and coastal waters, and further influence the accuracy of
AC (Pahlevan et al. 2021). At present, iCOR is the only processor that corrects adjacency effect.

5.2.4. L2gen
As illustrated in Figure 5 and Table 2, L2gen achieved the best agreement with field measurements
and was the most stable and balanced among the five algorithms for all OWTs. This can be
explained by the following reasons: (1) Aerosol data used in L2gen were mainly obtained from
AERONET-OC (Ahmad et al. 2010) that is also the major source of in situ data for matchup in
this study; (2) The built-in bio-optical model and iterative scheme with NIR and SWIR switching
options contribute to the stability of retrieval; (3) The effective standard flagging system can remove
low-quality pixels and improve the retrieval quality. However, L2gen also showed systematic under-
estimation for all OWTs except for OWT 3, as shown in Figures 6 and 12. This phenomenon could
be related to adjacency effects or uncertainties in estimating the aerosol contribution because of low
signal-to-noise ratio propagation into the blue band when extrapolated from NIR and SWIR bands.
They both led to overestimation of aerosols and retrieval of negative or low Rrs (Ibrahim et al. 2018).
Therefore, uncertainties still exist in L2gen-retrieved Rrs data. L2gen requires an accurate under-
standing of aerosol types to obtain high-quality Rrs retrievals. Hence, uncertainties for L2gen-
derived Rrs are mainly determined by uncertainties in aerosol LUTs, spectral extrapolations, and
absorbing aerosols (Gordon, Du, and Zhang 1997; Franz et al. 2015).

In view of the abovementioned potential sources of uncertainties, Pahlevan et al. (2014) and
Franz et al. (2015) investigated vicarious calibration gains for OLI, which apparently improved
the accuracy of Rrs. However, alternative calibration gains also introduced some uncertainties as
a result of algorithm failure caused by residual effects from cloud shadow or overcorrection for
aerosol contribution in one or more visible band. Overcorrection usually occurs when water-leav-
ing radiance is not negligible for bands used to estimate aerosol contributions (Amin et al. 2009).
Pahlevan et al. (2014) found that alternative calibration gains could also result in overcorrection of
L2gen-derived Rrs at 443 nm.
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5.2.5. Polymer
The Polymer algorithm assumes that the Angstrom coefficient of aerosol scattering is 1.0 (Zhang
et al. 2018). From the perspective of global statistics, Angstrom coefficient usually varies between
0.5 and 1.3 (Hu, Lee, and Franz 2012). For clear open oceanic waters, it is close to 1.0. Nevertheless,
it will deviate from 1.0 for coastal waters and estuaries, resulting in incorrect spectral shape of aero-
sol reflectance and then leading to errors in the retrieved Rrs. As reported by Steinmetz, Deschamps,
and Ramon (2011), inappropriate estimation of wind speed at each pixel would yield negative
reflectivity. Furthermore, Polymer simplifies that reflectance can be modeled as a function of
two parameters, i.e. chlorophyll-a concentration and a coefficient (g) to account for backscattering
variability (Zhang et al. 2018). In clear open oceanic waters where optical properties are mainly
determined by chlorophyll-a, like OWTs 1 to 3, the algorithm demonstrated good performance,
especially at 561 and 655 nm. Obvious overestimation can be clearly seen for Rrs at 443 and
482 nm. This is related to the following reasons: (1) Insufficient correction for strong Rayleigh scat-
tering in the blue to green spectral domain; (2) The spectral optimization did not account for con-
tributions of CDOM to IOPs, other than chlorophyll-a (Steinmetz and Ramon 2018). In turbid
coastal waters, like OWTs 4 to 5, changes in optical properties are affected not only by phytoplank-
ton and their appendage, but also by other substances, such as suspended inorganic particles and
CDOM (Babin et al. 2003; Siegel and Michaels 1996; Jiang et al. 2014). The assumptions made
in Polymer are not applicable. Polymer would thus greatly underestimate Rrs as different IOP
models produced different phytoplankton concentration outputs (Windle et al. 2022).

5.3. Potential improvements towards AC processors

As discussed above, each AC scheme has their own advantage and disadvantage. The choice of
optimal AC for specific region varies, especially for coastal turbid waters. Relative large errors
may be expected when data outside the range of those used for algorithm development are
involved. Therefore, optical classification of OWTs is essential to improve the accuracy of
different AC algorithms. In addition, there exists other potential improvements toward differ-
ent AC processors.

Dependent upon sun-target-sensor geometry, sun glint may pose a major challenge for ocean
color remote sensing from space. Although it can provide information to extract surface features,
like oil spill and internal wave, it hinders quantitative retrievals of biogeochemical variables from
satellite observations. It was usually masked by defining a threshold during AC, like Acolite and
L2gen, resulting in reduction of valid satellite data. To date, Polymer is the only processor capable
of correcting sun glint. With more studies providing insights into the mechanism of sun glint, it is
promising to address concerns caused by sun glint in the near future. Adjacency effect is another
source of uncertainty to be addressed during AC. In the atmosphere-land system, adjacency
effect always happens due to the presence of scattering atmosphere (Frouin et al. 2019). For in
situ observations close to land, there would inevitably be interference of land pixels in the correction
process. Among the five algorithms evaluated here, only iCOR considered this effect.

Complex aerosol properties can be significantly influenced by different continental and mon-
soon climates, which help absorb various anthropogenic particles, as well as desert dust in certain
seasons (Mélin et al. 2010). Therefore, it is necessary to develop regional aerosol models suitable for
different climate conditions in different regions in the future to describe the characteristics of differ-
ent aerosols. At the same time, accurately calibrated paired datasets need to be expanded to validate
and improve the accuracy and stability of aerosol models. In complex coastal environments, com-
bination of multi-source remote sensing data can be considered. For example, the vertical structure
of aerosols can be inferred from active remote sensing data such as LIDAR (Tian et al. 2009). In the
future design of ocean color satellite sensors, payloads for concurrent measurements of aerosol and
ocean color can be considered to provide more accurate aerosol information for AC. More detailed
information is also conducive to the optimization of AC algorithm.
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Polarization observation is also valuable for the improvement of AC accuracy. Some scientific
research has identified that atmospheric products related to both clouds and aerosols can only
be obtained with a multi-angle polarimeter which provides information for the simultaneous retrie-
val of Rrs and aerosol properties (Dubovik et al. 2011; Hasekamp, Litvinov, and Butz 2011; Peers
et al. 2015). Polarization measurements of scattered radiance in the NIR and SWIR domain provide
determination of aerosol physical properties, i.e. size distribution and refractive index. Hence, the
sensitivity of polarized radiance to aerosol types has the potential to improve AC, particularly in
turbid coastal waters. He et al. (2014) provided further evidence of advantages of polarimetry for
atmospheric correction over oceans. Polarization capabilities were added in the Pre-Aerosol,
Clouds, and ocean Ecosystem (PACE) mission in addition to and complementary with the
Ocean Color Instrument (OCI) (Waluschka et al. 2021).

Additionally, it is deemed necessary to apply an OWT classification before AC. This procedure
would assist in better evaluating the performance of AC algorithms in local or global scales. Other-
wise, the results can be affected. For instance, data out of the range for algorithm development could
easily lead to failure, or the magnitude of adjacency effect in the visible bands could be underesti-
mated (Bulgarelli and Zibordi 2018; Pereira-Sandoval et al. 2019). Furthermore, it would be helpful
to have IOP data, like chlorophyll-a and CDOM, to improve the classification.

5.4. Other considerations

As stated above, uncertainties may appear even when executing the optimal AC for OLI images. In
addition to the aforementioned reasons, these uncertainties can also be explained by the following
reasons. Firstly, it is found that the inaccuracy during the removal of aerosol contribution is still the
main source of error in Rrs inversion (Warren et al. 2019). Aerosol models used by the AC pro-
cessors do not necessarily accurately represent aerosol types over land and coastal waters. Secondly,
environmental factors affect the accuracy of Rrs retrieval. Ilori, Pahlevan, and Knudby (2019) inves-
tigated the influence of AOT, solar zenith angle (SZA), and wind speed. They found that AOT had
no significant effect on the performance of L2gen and Acolite while SZA had a significant effect on
the quality of L2gen- and Acolite-derived Rrs. AOT and SZA were reported to reduce the quality of
water leaving radiance obtained by SeaWiFS and MODIS sensors (Zibordi, Mélin, and Berthon
2006). The effect of wind speed on Rrs is similar to that of SZA. Finally, ancillary information
for the operation of atmospheric correction processors is a very important criterion, such as com-
putational efficiency and output data size. The averaged time for each algorithm to process an entire
image (computational efficiency) and the averaged size of Rrs products are recorded and displayed
in Table 5. It can be seen that L2gen-yielded Rrs has the smallest size. Although the five algorithms
were implemented on different configurations and environments, Acolite seems to have the largest
computational efficiency, followed by L2gen. It should be noted that the data size of Rrs data is
related to the choice of output and the calculation efficiency is related to CPU and RAM.

Table 5. Comparison among the five AC algorithms in terms of computation efficiency and output data size.

Processors Computation efficiency (one image) Output data size Configuration and Environment

Acolite
(V20210114)

∼20 minutes ∼2.5GB System: Ubuntu 18.04
CPU: Intel(R) Core (TM) i7-9700F CPU @ 3.00 GHz
RAM: 16.0 GBC2RCC

(V6.0)
∼4 hours (gpt) ∼10 hours (GUI) ∼6GB

iCOR
(V2.0.0)

∼1 hour ∼1.6GB System: Ubuntu 18.04 (virtual machine)
CPU: Intel(R) Core (TM) i7-9700F CPU @ 3.00 GHz
Number of processors = 6/16
RAM: 10.0 GB

L2gen
(V7.5.3)

∼50 minutes ∼400MB

Polymer
(V4.12)

∼2 hours (Add precorrection) ∼1.5GB System: Ubuntu 16.04 (server)
CPU: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
RAM: 72.0 GB
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6. Conclusion

AC is a prerequisite for quantitative applications of ocean color satellite data. This study provides an
assessment of five AC algorithms (Acolite, C2RCC, iCOR, L2gen, and Polymer) for Landsat-8 OLI
imagery over a variety of water types in global oceans. This is also the first time to match the most
applicable AC algorithm for OLI based on accuracy or spectral similarity on a global scale. L2gen-
produced Rrs demonstrated the best agreement with in situ measurements among the five algor-
ithms, followed by Polymer, C2RCC, iCOR, and Acolite in order. Classification of OWTs was car-
ried out using in situ measurements with matched satellite observations. OWT-specific analysis
showed that L2gen produced the most accurate Rrs for the five OWTs. Potential improvement
for future AC algorithms was recommended, especially to address major concerns, such as sun
glint and adjacency effect.

Synoptic views from space-borne satellite sensors provide a unique vintage point to document
and determine changes in marine environments and their drivers. Satellite observations play a sig-
nificant role in supporting the framework for Sustainable Development Goals (SDGs), like Clean
Water and Sanitation (SDG 6), Sustainable Cities and Communities (SDG 11), Climate Action
(SDG 13), Life below Water (SDG 14), and Life on Land (SDG 15) (Sudmanns et al. 2020; Guo
2021). Accurate AC approaches, especially over turbid waters, is critical to leverage the maturity
of existing operational ocean color algorithms and further pave the road for assessing the effects
of climate change and anthropogenic activities on marine ecosystems. Our findings can provide
deeper insights into the improvement of future AC schemes and thus our knowledge on long-
term variations in oceans can be strengthened to contribute to the development of Digital Earth.
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